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Abstract

Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly
employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in
terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples
required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic
organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera
observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the
replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when
obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with
camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of
the United States, but supplied the necessary observations to infer factors influencing population distribution and
abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera
traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity
of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate
that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale
reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study
demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform
occupancy models and account for imperfect detection when describing factors influencing fish population distribution and
dynamics.
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Introduction

Ecological surveys are important for understanding spatial and

temporal variability in plant and animal populations, as well as

providing the necessary feedback to guide policy options in the

context of state-dependent and adaptive-management programs

[1]. Individuals of a population are often counted directly in order

to draw inferences about their abundance and distribution, but

rarely are all individuals observed [2]. When the detection of

individuals is imperfect, some portion of the population will be

missed leading to erroneous conclusions and possibly erroneous

management [3,4,5,6]. Many ecological surveys instead use count

or capture-rate data to index abundance. The implicit, and often

violated, assumption of abundance indices is that capture

probability does not vary systematically across space, time, habitat

types, or environmental conditions [7,8]. An alternative approach

is to explicitly account for imperfect detection in sampling

methodologies. Plot, distance, capture-recapture, and removal

methods have all been used in terrestrial and aquatic environments

to estimate animal abundance while accounting for imperfect

capture probabilities [9], but these approaches are often imprac-

tical or expensive for many species [10].

The use of occupancy models to describe the distribution of

populations while accounting for imperfect detection has increased

in popularity over the last decade. These models require repeated

sampling at spatially replicated sites to simultaneously estimate

occupancy and detection probability, thereby correcting for

imperfect detection [11,4,12]. Although the occurrence of a

species at a site describes a different population process than

abundance, occupancy models can be structured to estimate

abundance directly by making some structural assumptions about

the relationship between detection and abundance [3]. One major

advantage of occupancy models for estimating population

distribution and abundance is the use of incidence data that are

often less costly to collect than data to estimate abundance directly
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(e.g., tagging information). Thus, occupancy models are gaining

popularity in the wildlife literature as a monitoring tool.

Examples of occupancy modeling to index abundance or

distribution are currently sparser in the fisheries literature than the

wildlife literature. One reason for this discrepancy is the difficulties

in sampling fish populations in ways that meet the assumptions of

the model, particularly in marine systems, but see [13,14,9].

Because sampling fish is often invasive (e.g., electrofishing,

trawling), replicate samples may not meet the assumption of

independence [15] as the first sample may affect the detection of

fish in the following samples. Temporal replicates that allow

enough time between samples for the fish to recover from previous

handling can be employed, but increase the risk of violating the

population closure assumptions [11,16]. Spatial replication of fish

sampling at a site is often employed to ameliorate this issue;

however, substituting spatial for temporal replicates can cause bias

in parameters estimates under common sampling schemes [17,18].

These sampling issues put fisheries managers at a great disadvan-

tage because fisheries indices of abundance that inform policy

choices are known to be plagued with issues of detection

[19,20,21]. The lack of account for these detection issues has, in

some cases, lead to inappropriate management choices and

devastating ecological and economic losses, e.g., [22,23]. For

example, the collapse of the North Atlantic cod stock in 1992 is

cited as one the greatest social and economic tragedies in Canada’s

history and is partially attributed to a systematic increase in

detection probability that caused abundance indices to remain

stable as the stock declined [24]. Thus, methods that allow fisheries

researchers to account for incomplete or variable detection when

estimating the abundance and distribution of stocks are para-

mount.

An alternative sampling scheme to achieve temporal and spatial

replication is the use of multiple sampling gears simultaneously.

The use of multiple gears with occupancy models is uncommon in

the ecological literature, but has been utilized to expand detection

opportunities across species and individuals with variable vulner-

ability to different detection methods [25,26]. Additionally,

multiple gears employed in a nested design have been used to

estimate occupancy probability at different spatial scales [27]. The

use of non-invasive sampling gears such as camera traps in

combination with traditional fish sampling [28,29] may resolve

some issues associated with replicate sampling described above.

With replicate observations from simultaneous deployment of

different gears in time and space, issues of bias induced by closure

violations and non-independence of individual detections may be

avoided. Thus, sampling with multiple gears combined with

occupancy models may represent a powerful tool for monitoring

fish populations.

Red snapper Lutjanus campechanus along the southeast USA

coast (SEUS) is an economically important marine fish species and

their management would benefit greatly from basic knowledge

regarding their abundance and distributional patterns [30]. Since

2010, the SEUS red snapper fishery has been closed due to

overfishing, and the only long-term survey data that exist (i.e.,

chevron trapping) have been deemed unusable in recent stock

assessments due to overdispersed catches, as well as the perceived

low detection probability [31,32]. Beginning in 2010, high-

definition video cameras have been attached to chevron traps to

presumably increase gear detection probability [28]. Thus, the

addition of cameras to the existing monitoring program is deemed

critical for recovering and sustainably managing the red snapper

fishery.

Here we develop occupancy and abundance models that

employ incidence data collected with a combination of traditional

invasive (chevron trap) and non-invasive (camera trap) sampling

gears. This gear combination is novel to marine fisheries research

and allows for a gear-for-time substitution for generating replicate

samples that we expect will better meet the required assumptions

of binomial sampling. Our specific objectives are to demonstrate

the utility of these sampling methods by, 1) evaluating the relative

fit of models that obtain sample replication from a combination of

chevron trap and aggregated and disaggregated camera trap data,

and 2) apply these models to evaluate how time and habitat

influence red snapper occupancy probability and abundance as

well as how gear and habitat influence detection.

Materials and Methods

Ethics Statement
Data collection for this study was authorized in a 5-year

Scientific Research Permit (that commenced in 2010), issued by

the Administrator of Southeast Regional Office of the National

Marine Fisheries Service, National Oceanic and Atmospheric

Administration, United States Government. This Scientific

Research Permit covered all areas sampled in the study. All

research followed the guidelines of the U.S. Government

Principles for the Utilization and Care of Vertebrate Animals

Used in Testing, Research, and Training (http://grants.nih.gov/

grants/olaw/references/phspol.htm#USGovPrinciples). Red

snapper collected in fish traps were euthanized by being placed

on ice, after which a variety of biological samples were extracted

per the guidelines of the Scientific Research Permit.

Sampling Program
Sampling occurred in Atlantic Ocean continental shelf waters

off Georgia and Florida, USA, which encompass the historical

center of the red snapper fishery in the SEUS [31] (Figure 1).

Sampling targeted red snapper and other reef fishes that typically

associate with hard substrates, which occur as scattered patches

within the dominant sand and mud substrate of the region [33].

Patches of hard substrates in the SEUS are diverse and consist of

flat limestone pavement, ledges, rocky outcroppings, or reefs, and

are often colonized by various types of attached biota [34,35]. The

major oceanographic feature of the SEUS is the Gulf Stream,

which influences outer sections of the continental shelf as it flows

northward.

Sampling was conducted by the Southeast Fishery-Independent

Survey (SEFIS), a fishery-independent sampling program created

by the National Marine Fisheries Service in 2010 to increase

fishery-independent sampling in the SEUS. Hard bottom sampling

sites were selected for sampling in one of three ways. First, most

sites were randomly selected from a sampling frame of hard

bottom sampling points developed by SEFIS or the Marine

Resources Monitoring, Assessment, and Prediction program of the

South Carolina Department of Natural Resources. Second, some

sites were sampled opportunistically even though they were not

randomly selected for sampling in a given year. Third, new sites

were added during the study period using information from

fishermen, charts, and historical survey information. These

locations were investigated using the vessel echo sounder and

sampled if hard bottom was suspected to be present. Overall, less

than 10% of the sampled sites included in the study were selected

non-randomly via the second and third methods above. All

sampling for this study occurred in 2010–2011 during daylight

hours aboard the R/V Savannah, NOAA Ship Nancy Foster, or

NOAA Ship Pisces. Depths ranged from 16 to 83 m.

Chevron/camera traps were deployed at each selected site and

consisted of a chevron trap outfitted with an outward-looking
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high-definition video camera (Figure 2). Eighteen to 24 trap

combinations were deployed for approximately 90 min each day

during April-October of each year. Traps were always spaced

more than 200 m apart and each chevron trap was baited with 24

menhaden Brevoortia spp. Chevron traps have been used widely

to index the abundance of reef fish and invertebrate species

[36,37,38]. Chevron traps were constructed from plastic-coated

galvanized 12.5-ga wire (mesh size = 3.4 cm2), and were shaped

like an arrowhead measuring 1.7 m61.5 m60.6 m, with a total

volume of 0.91 m3 (Figure 2).

A GoPro Hero (2010) or Canon Vixia HFS200 (2011) camera

was attached over the mouth of each chevron trap. This camera

positioning allowed for the potential detection of fish that are

available to be caught by the chevron trap whether they actually

enter or do not enter the trap. These cameras have similar viewing

areas and resolution, and we assumed that camera type did not

influence detection probability. We examined 1-second ‘‘snap-

shots’’ every 30 seconds beginning 10 minutes after the chevron

trap was deployed and continuing for 20 minutes (for a total of 41

snapshots; [39]). If red snapper were seen in any of the 41

snapshots, they were considered present in the camera trap. This

sampling strategy allowed us to gain replication at each sampling

site from the simultaneous use of the chevron trap sample and the

aggregate sample of the camera, or gain additional replication by

using the disaggregated 41 1-second snapshots from the camera.

Hypothesized Predictors of Occurrence and Detection
Red snapper site occurrence is likely influenced by latitude,

depth, temperature, and various localized reef characteristics

associated with substrate type and bottom topography [40,41].

Habitat features such as substrate relief (i.e., the amount of

topographic variation), percent hard bottom (i.e., substrate

consisting of consolidated sediments), and percent attached biota

(i.e., substrate with attached coral or sponges) are potentially

important drivers of habitat suitability. Latitude, depth, and

temperature are also likely to influence occurrence at broader

spatial scales via processes potentially related to the native range of

the species, the probability of influence by warm Gulf Stream

currents, or fishery exploitation patterns.

Covariates that influence the observation process may be shared

or unique to each gear type. Chevron trap detection probability is

possibly related to deployment time (influencing the probability of

fish encountering the trap), current speed (influencing the intensity

and area of the bait plume scent), temperature (influencing fish

activity or metabolism), and current direction (influencing how fish

might orient to the trap). The camera trap detection process is

possibly influenced by water clarity (limiting the detection range)

and current direction and speed, which may affect the orientation

or staging location of fish relative to the camera orientation.

We only analyzed sites that contained both valid chevron and

camera trap samples. Sites were excluded if the chevron trap

bounced or drifted, the chevron trap mouth opening was blocked

by rocks, the video was dark, or any video files were missing. Year,

latitude, longitude, depth, and bottom temperature were recorded

at each sampling station. Bottom temperature (uC) was determined

using a Seabird ‘‘Conductivity, Temperature, and Depth’’

instrument package (CTD; model SBE 25, Bellevue, Washington,

USA). CTD casts were conducted near the middle of each

sampling period, and the instrument was lowered to within 2 m of

the bottom. Underwater videos were used to determine micro-

habitat features, water clarity, and current direction and

magnitude around the chevron/camera trap (Table 1). The data

analyzed in this study are reported in Table S1.

Modeling Overview
We modeled the occurrence of red snapper within a Bayesian

hierarchical framework using a distribution sub-model that

described how organisms are distributed among sites and a

detection sub-model that described the data-generating process

[42]. We also extended the occupancy model to account for

variation in detection probability due to variation in fish

abundance among sites using methods developed by Royle and

Nichols [3]. This model formulation assumes a relationship

between the probability of detecting a species and the number

of individuals of that species at a site. This is accomplished by

estimating the probability of detecting a single individual

(individual-based detection). The advantage of modeling abun-

dance is that variation in the probability of detecting a species due

to abundance variation among sites is explicitly accounted for and

covariates are evaluated for effects on the abundance of fish. We

evaluated performance of six candidate models including both the

basic occupancy model [11] and the abundance model (Royle-

Nichols [3]) formulation with both distribution and detection

model covariates, with and without random effects on the

detection process, and with aggregated and disaggregated

detection histories for the camera trap (Table 2). Additionally,

we fit the Royle-Nichols formulation both with and without

random effects on mean site abundance.

Basic Occupancy Model Structure
We defined occurrence as zi where z is a binary variable

indicating the latent occupancy state of red snapper at site i with

z = 1 indicating presence and z = 0 indicating absence. We

Figure 1. Study area with dots marking sampling locations. The
offshore contours are depth isoclines at 30 m, 50 m, and 100 m.
doi:10.1371/journal.pone.0108302.g001
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assumed that zi was the result of a Bernoulli trial represented by zi

,Bernoulli(yi), where yi represents the probability of occurrence

of red snapper at site i. Because the true occupancy state is

observed imperfectly, we modeled the probability of detection of

red snapper as a separate Binomial process for each gear, where

the unconditional probability of detection at site i with gear j is zi

pij. Thus, the number of observations of red snapper is represented

as yij*Binomial kj ,zipij

� �
, where pij is the detection probability

that is conditional on zi = 1, and k indicates the number of

replicate samples collected by each gear at each site.

We incorporated potential covariate effects in the distribution

sub-model using a logit link [43] specified as:

Figure 2. Chevron fish trap outfitted with an outward-looking Canon high-definition video camera over the mouth of the trap.
doi:10.1371/journal.pone.0108302.g002

Table 1. Variables evaluated as potential covariates influencing patterns in occurrence, abundance, and/or detection of red
snapper Lutjanus campechanus.

Covariate Description

Yr2011 Data collected in 2011

depth Depth of water in meters

depth2 Depth squared

lat Latitude of sample site in decimal degrees

lat2 Latitude squared

temp Bottom temperature (uC) of water at sample location

temp2 Bottom temperature squared

livebot.l 0–10% of substrate covered by live bottom (e.g., corals, sponges)

livebot.m 11–40% of substrate covered by live bottom

livebot.h .40% of substrate covered by live bottom

hardsub.l 0–10% of substrate is hard bottom (e.g., rocks, boulders, ledges)

hardsub.m 11–40% of substrate is hard bottom

hardsub.h .40% of substrate is hard bottom

relief.m Maximum topographical relief of substrate is 0.3–1.0 m

relief.h Maximum topographical relief of substrate is .1.0 m

soak The total amount of time the trap was deployed (minutes)

cdir.p Current direction is perpendicular to the trap mouth opening

cdir.a Current direction is away from the trap mouth opening

cspeed Speed of the current (low or high)

turb.h Indicates high turbidity (i.e., cannot see bottom habitat)

Covariates not listed here (e.g., yr2010) inform the models’ intercept predictions.
doi:10.1371/journal.pone.0108302.t001
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logit(yi)~

b1zb2yr2011izb3depthizb4depth2
i zb5latizb6lat2

i z

b7tempizb8temp2
i zb9livebot:lizb10livebot:miz

b11livebot:hizb12hardsub:lizb13hardsub:miz

b14hardsub:hizb15relief :mizb16relief :hi,

ð1Þ

where b1 represents the intercept of the distribution sub-model

and b2, b3,….b16 represent the logit-scale effects of each variable

on the probability of the occurrence. Variables and their

abbreviations are defined in Table 1.

A detection probability sub-model was developed for each gear

type. We specified the chevron trap detection probability pij = 1 as:

logit(pij~1)~a1za2tempiza3temp2
i za4soakiza5cdir:piz

a6cdir:aiza7cspeedi,
ð2Þ

where a1 represents the intercept and a2, a3,……a7 represent the

logit-scale effects of each covariate on detection probability

(Table 1). We specified camera trap detection probability pij = 2 as:

logit(pij~2)~Q1zQ2turbizQ3cdir:piz

Q4cdir:aizQ5cspeediz"i,
ð3Þ

where Q1 represents the intercept and Q2 through Q5 represent the

logit-scale effects of each variable on the probability of detection

by the camera trap (Table 1). The parameter ei is a site-specific

random effect to account for possible variation in detection

probability among sites not explained with covariates (see

Table 2). We modeled ei as a normally distributed random

variable with mean equal to zero and standard deviation se. The

random effects model structure was only used when considering

the disaggregated camera trap data containing sufficient informa-

tion to assure all model parameters were identifiable.

Royle-Nichols Model Structure
We modeled the abundance of red snapper based on methods

first proposed by [3] and then extended into a hierarchical

framework by [42]. Because we cannot observe the abundance at

sites directly, we specified site abundance Ni as a latent random

effect with variation that is explained by a Poisson distribution

across i sites as Ni ,Poisson(li), where li represents the mean site

abundance. Our data yij are the frequencies of red snapper

detections at site i with gear j. We assume that yij is the result of

binomial outcomes as yij*Binomial kj ,pij

� �
, where pij is the

probability of detecting at least one individual at site i with gear j
and kj is the number of replicate samples collected with gear j. We

linked the distribution sub-model to the detection sub-model by

specifying the relationship between pij and Ni, per [3], as

pij~1{ 1{rij

� �Ni
where rij is individual-based detection proba-

bility, as opposed to pij , which is the probability of detecting at

least one individual at site i with gear j. This formulation

essentially models the detection probability pij as a random effect

due to variation in fish abundance among sites.

We utilized a similar covariate structure for the of the Royle-

Nichols distribution sub-model as we did for the basic occupancy

model with log of mean site abundance (li) specified as:

log(li)~

b1zb2yr2011izb3depthizb4depth2
i zb5latiz

b6lat2
i zb7tempizb8temp2

i zb9livebot:lizb10livebot:mi

zb11livebot:hizb12hardsub:lizb13hardsub:miz

b14hardsub:hizb15relief :mizb16relief :hiz"i:

ð4Þ

The parameter ei was a site-specific random effect drawn from a

Normal distribution with mean of zero and standard deviation (se)

to account for extra-Poisson variation in abundance across sites.

Similar to the basic occupancy model structure, the random effects

model was only fit to the disaggregated camera trap data to assure

all parameters were identifiable. Covariates were incorporated into

the detection sub-models with a logit link as:

logit(rij~1)~a1za2tempiza3temp2
i za4soakiza5cdir:piz

a6cdir:aiza7cspeedi,
ð5Þ

logit(rij~2)~Q1zQ2turbizQ3cdir:pizQ4cdir:aizQ5cspeedi, ð6Þ

where rij = 1 is the individual detection probability for chevron

traps and rij = 2 is the individual detection probability for camera

traps. All continuous variables were centered on the mean and

scaled by one standard deviation to help with fitting and allow for

unambiguous comparison of parameter estimates.

Table 2. General model structures evaluated for convergence properties and goodness of fit (GOF).

Model Type Model Structure Camera Trap Data G-R GOF

Basic Occupancy Bin(y ) Bin(pchevron) Bin(pcamera) pooled 1.0 0.99

Basic Occupancy Bin(y) Bin(pchevron) Bin(pcamera) disaggregated 1.0 0.00

Basic Occupancy Bin(y) Bin(pchevron) Bin-logNorm(pcamera) disaggregated 1.0 0.00

Royle-Nichols Pois(l ) Bin(pchevron) Bin(pcamera) pooled 1.0 0.71

Royle-Nichols Pois(l) Bin(pchevron) Bin(pcamera) disaggregated 1.0 0.00

Royle-Nichols Pois-logNorm (l) Bin(pchevron) Bin(pcamera) disaggregated 1.0 0.00

The camera trap data column indicates models using pooled detections versus disaggregated detections. Values of GOF approaching zero indicate lack of fit while
values approaching one indicate no evidence of lack of fit. Values of the Gelman-Rubin statistic (G-R) close to one indicate model convergence while values greater than
one indicate lack of model convergence. Bolded models converged and displayed no evidence of lack of fit.
doi:10.1371/journal.pone.0108302.t002
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Model Evaluation
We evaluated the performance of six candidate models to

determine the model structure that best described the data

(Table 2). These models included both the basic occupancy model

and the Royle-Nichols model fit with camera trap detection

models employing both aggregated and disaggregated detection

data. The aggregated camera trap detections used the entire 41

snap-shots as one sample while the disaggregated camera trap

detections considered each snap-shot as an independent sample to

determine if there was a trade-off between the number of

replicates and effort per replicate that may optimize model fit.

We hypothesized that more replicates would better inform

estimates of the detection process than a single aggregated sample.

However, disaggregated detections may sacrifice model fit because

of auto-correlation among the snap shots. For the basic occupancy

models and considering the disaggregated camera trap data, we

evaluated model structures with and without site-specific random

effects on the detection process of the camera traps to account for

variation in detection that was not explained by the site-specific

covariates (3). For the Royle-Nichols models and considering the

disaggregated camera trap data, we evaluated model structures

with and without site-specific random effects on abundance in the

distribution sub-model to account for extra-Poisson variation in

abundance (4). This model extension, in turn, modeled additional

variation in the detection process of both the cheveron trap and

the camera trap through the relationship between detection

probability and abundance.

We performed our model evaluations at two different levels.

First we evaluated model fit with a Chi-squared goodness of fit

(GOF) test developed by [44]. Although lack of fit can result for

many different reasons, adequate fit of a model would indicate that

the assumptions of the model such as independent detections

among camera snap shots or between the camera and the chevron

trap were adequately met. The GOF test is a form of posterior

predictive check that assumes the frequency of detection histories

conform to a Chi-square distribution. Point estimates of all

parameter values from the full model are used to perform a

parametric bootstrap to determine the expected distribution of

model deviances. The deviance of the observed detection

frequencies is then compared to the distribution of expected

deviances to determine model fit. Goodness of fit values range

from zero to one with values approaching zero indicating lack of fit

and values approaching one indicating adequate fit.

For all models judged to fit adequately by the GOF [44]

procedure, we further evaluated the support of each covariate as

our second level of model evaluation. We considered all

combinations of covariates plausible and estimated the inclusion

probability of each covariate using a mixture modelling approach

where each covariate is multiplied by an ‘‘inclusion parameter’’

([42], pages 72–73). The inclusion parameters (wv for all variables

in the model) were latent binary variables with uninformative prior

probabilities of 0.5 (i.e., equal probability model inclusion or

exclusion). The posterior probabilities of the inclusion parameters

correspond to the probability that the given variable is included in

the model, and parameter summaries and predictions are

averaged across all covariate combinations. Following [45], we

assumed that parameters with inclusion probability greater than

50% were adequately supported by the data.

Posterior probability distributions of model parameters were

estimated using a Monte Carlo-Markov chain (MCMC) algorithm

implemented in program JAGS [46]. We called JAGS from within

program R [47] with the library RJAGS (http://mcmc-jags.

sourceforge.net). All prior distributions were uninformative distri-

butions specified to have little influence on the posterior

probability distributions. The prior distributions of all logit-scale

parameters were specified as t-distributions with s = 1.566 and n
= 7.763 per [48] such that back-transformed values assigned equal

probability for all values between zero and one. Priors of standard

deviation parameters were specified as uniform distributions with

equal probability between zero and 100 and were verified to not

influence the range of the posterior distributions. Inference was

drawn from 30,000 posterior samples taken from 3 chains of

100,000 samples thinned to every 10. We allowed a burn in of

10,000 samples to remove the effects of initial values. Convergence

was diagnosed for the full model by visual inspection of the

MCMC chains for adequate mixing and stationarity and by using

the Gelman-Rubin statistic (with values ,1.1 indicating conver-

gence; [49]).

Results

The Gelman-Rubin statistic indicated that all of the models

converged to stable posterior distributions (Table 2). Based on the

[40] GOF statistic, all of models considering disaggregated camera

trap data exhibited poor fit. Inspection of the raw incidence data

suggests that the poor fit was largely influenced by a small number

of sites with much higher camera trap detection frequencies than

predicted by the model structure and covariates considered. The

remaining two models exhibiting good fit considered the pooled

data and did not include log-normal random effects on either

abundance or camera trap detection. We present detailed results

from both of these models, Bin(y) Bin(pchevron) Bin(pcamera) and

Pois(l) Bin(pchevron) Bin(pcamera), and compare and contrast the

basic occupancy versus the Royle-Nichols models. The computer

code for these models is reported in Appendix S1 and S2.

The occupancy probability across years was estimated as 0.45

(95% CI = [0.30, 0.57]) for the basic occupancy model and 0.48

(95% CI = [0.32, 0.61]) for the Royle-Nichols model. As expected,

the observed occupancy rates, uncorrected for imperfect detection,

were lower for both the chevron trap (0.14) and camera trap (0.31)

data. The estimated mean abundance (l) across sites from the

Royle-Nichols model ranged between 0.01 and 2.08 fish site21. In

contrast, the observed chevron trap catch across sites ranged

between 0 and 13 fish site21 and the observed maximum camera

trap count ranged between 0 and 14 fish site21. While maximum

numbers of fish observed per site are larger for the chevron and

camera trap than the maximum estimated l, the proportion of

sites where the observed numbers of fish was greater than 2 was

small for both the chevron (0.04) and the camera (0.07) trap data.

Distribution
The posterior inclusion probabilities for the basic occupancy

model indicated that the distribution sub-model best supported by

the data included the covariates: water depth (depth, Pr = 0.87;

Table 3), latitude (lat, Pr = 0.95), and its squared term (lat2,

Pr = 0.99). This model predicted that occupancy probability

should vary between approximately 0.6 and 0.3 with a depth

change from 20 m to 60 m (Figure 3). The model also predicted

that occupancy probability should vary quadratically with latitude

peaking (,0.48) at approximately 29.5uN and declining to near

0.2 at 27.2uN and 31.3uN. Notably, the year covariate (yr2011)

was not supported by the data, suggesting no temporal trend in the

occurrence probability of red snapper between 2010 and 2011.

The distribution sub-model of the Royle-Nichols model

produced similar results to the basic occupancy model likely due

to both low site-specific true abundances and little variation in true

abundance among sites. Water depth (depth, Pr = 0.96; Table 4)

and both latitude (lat, Pr = 1.00) and its squared term (lat2,

Multiple-Gear Occupancy Model for Red Snapper
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Pr = 1.00) were the most important covariates influencing abun-

dance in the model (Table 4). On average, predicted abundance

ranged between 1.0 and 0.5 individuals per site as depth changed

from 20 m to 60 m (Figure 3). Abundance was also predicted to

have a quadratic relationship to latitude, with a predicted

abundance of about 0.20 individuals per site at 27uN and

31.5uN and peaking at approximately 0.75 individuals per site at

29.5uN (Figure 3). The Royle-Nichols model indicated that high

coverage of the substrate with biota had a negative influence on

abundance (livebot.h, Pr = 0.55; Table 4). This effect predicts a

decrease of about 0.66 individuals per site between low (0–10%)

and high levels (.40%) of live bottom coverage. The basic

occupancy model suggested a similar effect, though the inclusion

probability was slightly less than the 0.5 standard for inclusion. As

with results of the basic occupancy model, mean abundance did

not appear to differ between 2010 and 2011.

We used the distribution sub-models from both the basic

occupancy and Royle-Nichols models to predict both the

occupancy probability and the mean abundance across a grid

from approximately latitude 27uN to 32uN and from near-shore to

a depth of 65 m (Figure 4). The model predicts that occupancy of

reefs is highest in shallow waters (,20 m) and between approx-

imately Cape Canaveral (28.4uN) and the Georgia-Florida state

boundary line. The Royle-Nichols model predicts highest abun-

dance at reefs in similar locations. Both models predict the center

of distribution to be located at reefs offshore from Cape Canaveral.

Table 3. Posterior probability summaries of parameters evaluated in the red snapper Lutjanus campechanus basic occupancy
model using pooled camera trap data and without a site-specific random effect on camera trap detection probability (Bin(y)
Bin(pchevron) Bin(pcamera)).

Credible interval Inclusion

Parameter Mean SD 2.5% 97.5% probability

Distribution model

intercept 20.188 0.281 20.844 0.279 2

yr2011 20.003 0.075 20.166 0.082 8%

depth 20.330 0.167 20.602 0.000 87%

depth2 0.013 0.055 0.000 0.215 8%

lat 20.401 0.155 20.672 0.000 95%

lat2 20.421 0.105 20.624 20.220 99%

temp 0.007 0.047 0.000 0.158 6%

temp2 0.000 0.018 0.000 0.000 3%

livebot.l 0.153 0.288 0.000 0.957 30%

livebot.m 0.044 0.178 20.045 0.684 14%

livebot.h 20.307 0.401 21.202 0.000 46%

hardsub.l 0.070 0.216 0.000 0.799 17%

hardsub.m 0.126 0.276 0.000 0.938 25%

hardsub.h 0.005 0.163 20.333 0.365 11%

relief.m 0.008 0.080 20.023 0.235 8%

relief.h 20.055 0.194 20.726 0.011 16%

Chevron trap detection model

intercept 20.499 0.184 20.876 20.155 2

temp 20.055 0.130 20.455 0.000 20%

temp2 0.003 0.036 0.000 0.056 5%

soak 20.005 0.043 20.106 0.000 6%

cdir.p 0.008 0.103 20.105 0.280 9%

cdir.a 0.014 0.123 20.130 0.392 10%

cspeed 0.051 0.410 20.769 1.249 21%

Camera trap detection model

intercept 1.126 0.533 0.132 2.213 2

turb.h 0.559 0.639 0.000 1.920 55%

cdir.p 20.067 0.332 21.082 0.477 20%

cdir.a 0.652 0.783 0.000 2.405 54%

cspeed 20.034 0.642 21.595 1.571 28%

All metrics were calculated from model averaged posterior distributions using the Bayesian mixture modeling approach. Bolded parameters had inclusion probability
greater than 50%.
doi:10.1371/journal.pone.0108302.t003
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Figure 3. Mean site occupancy probability and abundance of red snapper as a function of depth and latitude. The left column contains
the estimated mean site occupancy probability as a function of depth (top panel) and latitude (bottom panel) from the basic occupancy model. The
right column contains the estimated mean site abundance as a function of depth (top panel) and latitude (bottom panel) from the Royle-Nichols
occupancy model. The intervals represent 95% credible intervals.
doi:10.1371/journal.pone.0108302.g003
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Detection
Our mixture model procedure indicated support for covariates

of camera trap detection, but did not for covariates of chevron trap

detection as all covariate inclusion probabilities were ,0.50

(Tables 3 & 4). The largest effect on detection was between the

chevron traps and the camera traps. Camera trap detection

probabilities were predicted to be about twice the detection

probabilities predicted for chevron traps for both the basic

occupancy model and the Royle-Nichols model (Figure 5). Mean

detection probabilities estimated with the basic occupancy models

were similar in magnitude to mean individual-based detection

probabilities estimated with the Royle-Nichols occupancy model,

likely due to low mean site abundances. Mean species detection

probability and individual-based detection probability values for

the chevron traps were 0.39 and 0.30, respectively (Figure 5). For

the camera traps, mean species detection probability and

individual-based detection probability values were 0.75 and 0.61,

respectively (Figure 5).

Covariates found to influence camera trap detection were water

turbidity and current direction and were consistent between the

basic occupancy model and the Royle-Nichols occupancy model.

The basic occupancy model predicted species detection probability

to be 0.09 higher in turbid water than clear water (turb.h,

Pr = 0.55, Table 3, Figure 6) and that mean detection probability

to be at least 0.10 higher when the current direction was away

from the camera lens (dir.a, Pr = 0.54). The results for individual-

based detection probability (r) from the Royle-Nichols model were

similar, but slightly stronger. The model predicted mean

individual detection probability to be 0.10 higher in turbid water

than clear water (turb.h, Pr = 0.59, Table 4) and mean individual-

Table 4. Posterior probability summaries of parameters evaluated in the red snapper Lutjanus campechanus Royle-Nichols
occupancy model using pooled camera trap data and without a site-specific random effect on abundance (Pois(l) Bin(pchevron)
Bin(pcamera)).

Credible interval Inclusion

Parameter Mean SD 2.5% 97.5% probability

Distribution model

intercept 20.433 0.222 20.954 20.066 -

yr2011 20.006 0.060 20.183 0.070 10%

depth 20.277 0.101 20.453 0.000 96%

depth2 0.002 0.024 0.000 0.063 6%

lat 20.414 0.106 20.627 20.214 100%

lat2 20.375 0.074 20.525 20.234 100%

temp 0.006 0.036 0.000 0.127 8%

temp2 0.001 0.016 0.000 0.007 4%

livebot.l 0.140 0.228 0.000 0.744 37%

livebot.m 0.054 0.165 20.081 0.589 21%

livebot.h 20.281 0.318 20.941 0.000 55%

hardsub.l 0.037 0.134 20.022 0.485 16%

hardsub.m 0.098 0.196 0.000 0.648 30%

hardsub.h 0.013 0.125 20.199 0.373 15%

relief.m 0.027 0.094 20.005 0.350 15%

relief.h 20.042 0.147 20.532 0.077 19%

Chevron trap detection model

intercept 20.940 0.217 21.391 20.542 -

temp 20.083 0.150 20.481 0.000 31%

temp2 0.005 0.049 20.039 0.149 9%

soak 20.011 0.058 20.207 0.000 10%

cdir.p 0.012 0.136 20.262 0.407 16%

cdir.a 0.037 0.170 20.204 0.569 19%

cspeed 0.062 0.445 20.899 1.252 32%

Camera trap detection model

intercept 0.512 0.483 20.388 1.515 -

turb.h 0.470 0.525 0.000 1.595 59%

cdir.p 20.025 0.294 20.840 0.646 26%

cdir.a 0.817 0.710 0.000 2.259 73%

cspeed 20.039 0.563 21.397 1.322 36%

All metrics were calculated from model averaged posterior distributions using the Bayesian mixture modeling approach. Bolded parameters had inclusion probability
greater than 50%.
doi:10.1371/journal.pone.0108302.t004
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based detection probability to be at least 0.17 higher when the

current direction was away from the camera lens (dir.a, Pr = 0.73).

Discussion

We explored the utility of combining observations from novel

camera trap methods with traditional chevron traps to inform

occupancy models that characterize temporal and spatial patterns

in reef fish distribution. While camera traps are occasionally

combined with other detection methods in terrestrial studies [e.g.,

50, 25], we are unaware of studies utilizing camera and fish traps

to provide the replicate observations required to account for

incomplete detection of marine fish. The use of multiple gears

sampling simultaneously assures closure among replicate samples,

which is a major advantage for informing occupancy models. This

is particularly true in aquatic systems where the need to use

invasive sampling methodologies can violate the closure assump-

tion among temporal replications.

We initially hypothesized that the disaggregated camera trap

data would be more informative than the pooled camera trap data

because of larger numbers of replications. However, the models

considering the disaggregated camera trap data exhibited poor fit

and simple examination of the raw data suggested the presence of

extra-binomial variation possibly caused by non-independence in

detections among individuals at the same site. This potential

violation of the binomial sampling assumption appears to limit the

utility of the disaggregated data for both the basic and Royle-

Nichols models. In particular, the Royle-Nichols model assumes

detections are independent among individuals in the relationship

between detection and abundance (p = 12(12r)N; [3,51]). Viola-

tions of this assumption could occur if replicate samples are

correlated or demonstrate extra-binomial variation. Correlation

among samples could occur if camera trap snap shots were taken

Figure 4. Mean site occupancy probability and abundance of red snapper in reef habitat off the coasts of Georgia and Florida.
Estimated mean occupancy probability of reef sites from the basic occupancy model (left panel) and abundance from the Royle-Nichols model (right
panel) as a function of depth and latitude.
doi:10.1371/journal.pone.0108302.g004
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Figure 5. Mean chevron and camera trap detection probabilities. Estimated detection probabilities at the reference covariate values
(intercept) from both the basic occupancy model (left panel) and the Royle-Nichols model (right panel) for red snapper. Note that for the basic
occupancy model framework the detection probability is for the species at occupied sites. In contrast, for the Royle-Nichols framework the detection
probability is for each individual at occupied sites. The intervals represent 95% credible intervals.
doi:10.1371/journal.pone.0108302.g005

Figure 6. Camera trap detection probabilities as influenced by turbidity and current direction. The estimated detection probabilities at
reference covariate values (intercept) and at high turbidity and with current direction away from the camera lens from both the basic occupancy
model (left panel) and the Royle-Nichols model (right panel) for red snapper. Note that for the basic occupancy model framework the detection
probability is for the species at occupied sites. In contrast, for the Royle-Nichols framework the detection probability is for each individual at occupied
sites. The intervals represent 95% credible intervals.
doi:10.1371/journal.pone.0108302.g006
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at too short of a time interval leading to serial auto-correlation.

Alternatively, extra-binomial variation can occur when animals

demonstrate characteristics that result in clustering as would be

expected from schooling behavior in fish. Red snapper exhibit

weak schooling behavior [52], which corroborates the evidence of

lack of independence observed in our data.

The consequence of violating the binomial sampling assumption

is a divergence from the relationship of occupancy and abundance

[51] because groups of fish are perceived as individuals by the

model. This violation results in an underestimation of abundance.

Our analysis showed evidence of negative bias because the

estimate of mean site abundance was less than the mean maximum

count across sites. However, we expect little impact on the

accuracy of occupancy probability estimates because occurrence is

defined by the presence of one or more individuals. Furthermore,

we expect the divergence of patterns in occurrence from patterns

in abundance to be low because of low numbers of individuals per

site, likely due to their overfished status in the SEUS [31].

Our findings suggested that depth and latitude explained most

of the variation in red snapper occupancy rate and mean

abundance among hard bottom sites. While this finding is clearly

supported by the data and analysis, it is important to recognize

that this does not imply that red snapper are not associated with

reef habitat. Because nearly all samples considered in the analyses

were collected on or near some amount of reef habitat, the analysis

is incapable of describing the difference in occupancy probability

or site abundance between hard bottom reef sites and non-reef

sites composed entirely of unconsolidated sediments with little or

no bottom relief. Instead, our analysis attempts to uncover

differences among reefs with different amounts of hard bottom,

attached biota, and topographic complexity. Our data supported

only a weak and negative relationship between red snapper

abundance and high incidence of attached biota. Overall this

supports the existing evidence that red snapper may not strongly

require specific reef characteristics and instead may be reef habitat

generalists [40,41]. However, caution must be practiced when

extrapolating these results outside of our sample region, as a subset

of our sites was selected non-randomly.

Both the basic occupancy and the Royle-Nichols models

estimated the inclusion probability of the year effect (yr2011) to

be much smaller than the 50% threshold. As such, the data do not

support a positive or negative difference in either occupancy

probability or site abundance between 2010 and 2011. Red

snapper is currently under a management rebuilding plan to

recover from a designated ‘‘overfished’’ status [31]. While our

results do not imply a change in population between 2010 and

2011, we recognize that a longer time-series of data may be

needed to observe any extant population trend [32]. However,

evaluation of a temporal effect from occupancy models is

potentially useful to both management and future stock assess-

ments, particularly as more years of data become available.

A major benefit of analyzing the camera and chevron trap data

in the occupancy modeling framework is to estimate both the

species and individual detection probabilities for each gear. The

model estimated that the camera-trap detection probability

increased with higher turbidity and if the current direction was

away from the camera lens. While we were not surprised that a

current direction that tends to cause fish to orient themselves in the

camera field of view would increase detection probability, we do

not have a good explanation as to why high turbidity would favor

detection over low turbidity. Perhaps red snapper tend to stage

closer to the chevron and camera traps when the water is more

turbid because they are visual predators and the chevron trap is

perceived as structure; however, the effect was small indicating this

would not be a pronounced behavior. The original motivation to

collect video information during chevron trap deployments was to

evaluate whether red snapper were frequently present near

chevron traps but not captured. Our work suggests that camera

traps are approximately twice as likely as chevron traps to detect

red snapper. Additionally, at least one red snapper will be detected

with .95% probability with the camera trap so long as $4

individuals are present. In contrast, $9 individuals must be

present to have a 95% probability of detecting the species with the

chevron trap.

We evaluated the use of occupancy style models that estimate

patterns in occurrence and abundance [3] with incidence data.

One limitation of these analyses for evaluating distributional

patterns occurs for species that inhabit most sampling sites and

therefore demonstrate little variation in occurrence rates. Under

these conditions, occupancy probability is not an informative

metric of population change. A further limitation occurs for

species with high abundance at occupied sites such that the species

is detected in most or all replicate samples. When this occurs, the

Royle-Nichols model can produce negatively biased estimates of

abundance. Although these were not the conditions for red

snapper in the SEUS, they can be the condition for more

ubiquitous or abundant species. For example, black sea bass

Centropristis striata demonstrate high catches in the SEFIS data

and would likely limit the utility of the Royle-Nichols model for

generating unbiased estimates of abundance. Thus, occupancy

models may perform best for species with some level of rarity such

as red snapper, but may be a less useful monitoring tool for more

ubiquitous or abundant species.

A natural extension of occupancy models not limited by high

occurrence rates and high abundance is a class of models referred

to as binomial-mixture models or N-mixture models [53]. Similar

to the Royle-Nichols occupancy model, binomial-mixture models

assume that abundance is distributed across sites according to a

distribution (e.g. Poisson) and that catches are the result of

replicated binomial processes. However, binomial-mixture models

fit count data as opposed to incidence data, which can be more

informative of the abundance and detection process. Research on

the use of binomial-mixture models for monitoring fish is more

limited than for occupancy models (but see [54]); however, some

research has been done on the use of multiple sampling methods

with binomial-mixture models of terrestrial species. For example,

[24] applied multiple sampling methods in a binomial-mixture

model of grizzly bears in Glacier National Park. [55] then

investigated the conditions when it is appropriate to combine

multiple sampling methods into a single binomial-mixture model

for grizzly bears. Evaluating these methods for marine fish catch

data generated with the combined chevron trap and camera trap

described here would be a valuable contribution to the ecological

literature.

Accounting for incomplete and variable detection of fish is rare

in the ecological literature because invasive sampling methods

inhibit appropriate replication. Our analysis demonstrates how the

use of non-invasive camera traps can be paired with invasive fish

traps to generate replicate samples needed to account for

incomplete and variable detection for marine fish. This work has

broad implications for fisheries management because fisheries data

are notoriously expensive and plagued with issues of variable

detection. Furthermore, the costs of inappropriate management of

fish stocks are high for commercially and recreationally valued

species. Thus, the methods we demonstrate here could improve

the management of many exploited fish stocks and reduce the risks

of economic and biodiversity loss.
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